Hidden Markov models with context-sensitive observations for grapheme-to-phoneme conversion
نویسندگان
چکیده
Hidden Markov models (HMMs) have proven useful in various aspects of speech technology from automatic speech recognition through speech synthesis, speech segmentation and grapheme-to-phoneme conversion to part-of-speech tagging. Traditionally, context is modelled at the hidden states in the form of context-dependent models. This paper constitutes an extension to this approach; the underlying concept is to model context at the observations for HMMs with discrete observations and discrete probability distributions. The HMMs emit context-sensitive discrete observations and are evaluated with a grapheme-to-phoneme conversion system.
منابع مشابه
Hidden Markov models for grapheme to phoneme conversion
We propose a method for determining the canonical phonemic transcription of a word from its orthography using hidden Markov models. In the model, phonemes are the hidden states and graphemes the observations. Apart from one pre-processing step, the model is fully automatic. The paper describes the basic HMM framework and enhancements which use preprocessing, context dependent models and a sylla...
متن کاملStatistical Grapheme to Phoneme Conversion using Language Origin
This report describes a method for grapheme to phoneme conversion using statistical models of pronunciation. The available techniques for this conversion are first described and examples of each are given. A baseline system which uses Hidden Markov Models to represent phonemes in English is described and evaluated. The results from the baseline system serve to replicate previous research and to...
متن کاملLetter-to-Phoneme Conversion for a German Text-to-Speech System
This thesis deals with the conversion from letters to phonemes, syllabification and word stress assignment for a German text-to-speech system. In the first part of the thesis (chapter 5), several alternative approaches for morphological segmentation are analysed and the benefit of such a morphological preprocessing component is evaluated with respect to the grapheme-to-phoneme conversion algori...
متن کاملImproving grapheme-based ASR by probabilistic lexical modeling approach
There is growing interest in using graphemes as subword units, especially in the context of the rapid development of hidden Markov model (HMM) based automatic speech recognition (ASR) system, as it eliminates the need to build a phoneme pronunciation lexicon. However, directly modeling the relationship between acoustic feature observations and grapheme states may not be always trivial. It usual...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010